Journal of Pharmacy and Chemistry

(An International Research Journal of Pharmaceutical and Chemical Sciences) Indexed in Chemical Abstract and Index Copernicus (IC Value 5.28) **www.stfindia.com www.jpc.stfindia.com**

Editor-in-chief

Prof. K.N. JAYAVEERA

Jawaharlal Nehru Technological University Anantapur, Anantapur, Andhra Pradesh -515001.

Associate Editor

Dr. K.V. Madhusudhan

Executive Editor

Dr. K. Balaji

Editorial Board

Dr. B.M. Vrushabendra Swamy	Dr. A. Venkateshwar Reddy	Dr. G. S. Kumar
Dr. G. Madhu	Dr. S. Subramanyam	Dr. K. Yogananda Reddy
Dr. K. Bhaskar Reddy	Dr. E. Sreedevi	Dr. K.C. Chaluvaraju

Editorial Advisory Board

Prof. Nagarapu Lingaiah	India	Prof. G. Krishna Mohan	India
Prof. T.R. Rao	India	Prof. M.L.N.Rao	India
Prof. R.Nageshwara Rao	India	Prof. S. Srihari	India
Prof. K.V.S.R.G. Prasad	India	Prof. Y. Rajendra Prasad	India
Prof. K. Kannan	India	Prof. Yeoh Peng Nam	IMU, Malaysia
Prof. D.R. Krishna	U.S.A	Prof. K.C.Naidu	India
Prof. Jonathan R Dimmock	Canada	Prof. Ananth. P. Haridas	India
Prof. Helton Max M. Santos	Portugese	Prof. Damaris Silveira	Brazil
Prof. Mustafa Iraz	Turkey	Prof. Abdul Naser B Singab	Egypt
Prof. Ali Asgarh hemmati	Iran	Prof. N. Devanna	India
Prof. K.R.S. Sambasiva Rao	India	Prof. R. Shyam Sunder	India
Dr. Nitin Mahukar	India	Prof. Arun Goyal	India
Prof. Sarangapani	India	Prof. Sunil K. Khare	India
Prof. Y. Narasimha Reddy	India	Dr. S. Narasimha Murthy	U.S.A
Dr. Girish Gowda	Saudi Arabia	Dr. K. Suresh Babu	India

Journal of Pharmacy and Chemistry

(An International Research Journal of Pharmaceutical and Chemical Sciences)

Volume 14 • Issue 3 • July – September 2020

CONTENTS

Quantitative Estimation Of Pravastatin Sodium And Aspirin By					
Simultaneous Equation	Method13	3			

CHALUVARAJU KC*, RAMGOPAL M. DHANWAD , NAVEEN KUMAR KL, NIRANJAN MS ,

Instruction to Authors

VIEWS

The views and opinions expressed in this journal are those of the contributors; Science-Tech Foundation does not necessarily concur with the same. All correspondence should be addressed to the Editor-In-Chief (Hon.), Journal of Pharmacy and Chemistry (Science-Tech Foundation), Plot No 22, Vidyut Nagar, Anantapur - 515 001, Andhra Pradesh, India. • e-mail:editorjpc@gmail.com. Send your queries at www.jpc.stfindia.com, www.stfindia.com

QUANTITATIVE ESTIMATION OF PRAVASTATIN SODIUM AND ASPIRIN BY SIMULTANEOUS EQUATION METHOD

Chaluvaraju KC*, Ramgopal M. Dhanwad, Naveen Kumar KL, Niranjan MS,

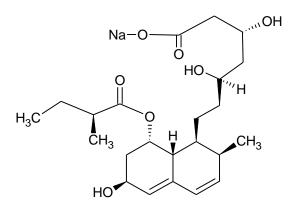
^{*} Department of Pharmaceutical Chemistry, Government College of Pharmacy, Bengaluru-560 027

*Address for Correspondence:

email:chaluvarajukc@gmail.com

Mobile No: +91 9449679390

ABSTRACT


In the present study a simple, rapid, economical, precise and accurate method for simultaneous estimation of aspirin and pravastatin sodium in combined dosage form has been developed. The method developed was simultaneous equation method and the solvent used is 0.1M Sodium hydroxide. The wavelength 297 nm and 238.40 nm were selected for aspirin and provastatin sodium respectively. Beer's range was obeyed in the concentration range of 5-45 μ g/mL for aspirin and 2-18 μ g/mL for pravastatin sodium. Recovery was found in the range of 98.8-101.3% for aspirin and pravastatin sodium in the physical formulation. The results of analysis have been validated statistically and recovery studies confirmed the accuracy and reproducibility of the proposed method as per ICH guidelines.

Keywords: Pravastatin Sodium, Aspirin, Spectroscopic method, Absorption, Simultaneous estimation, Sodium hydroxide

Introduction

Pravastatin (Fig 1) is chemically Sodium(3R,5R)-3,5-dihydroxy-7-[(1S,2S,6S,8S,8R)-6-hydroxy-2methyl-8-[[(2S)-2-methylbutanoyl]oxy]-

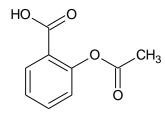

1,2,7,8,8aR,hexahydro naphthalen-1-yl]-heptanoic acid, its molecular formula is $C_{23}H_{35}O_7Na$ having molecular weight of 446.51 g/mol. It appears as a white to yellowish crystalline powder, soluble in methanol and water^[1].

Fig 1: Structure of Pravastatin

Pravastatin act as a lipoprotein lowering drug through two pathways. Pravastatin inhibit the function of hydroxymethylglutaryl-CoA (HMG-CoA) reductase, as a reversible competitive inhibitor, Pravastatin sterically hinder the action of HMG-CoA reductase by occupying the active site of enzyme. Pravastatin also inhibits the synthesis of very-low-density-lipoproteins (VLDL) and lowdensity-lipoproteins (LDL). These reduction increases the cellular LDL receptors, thus LDL uptake increases, removing it from the bloodstream^[2].

Aspirin (Fig 2) is chemically 2-acetyloxybenzoic acid or acetylsalicylic acid, its molecular formula is $C_9H_8O_4$ having molecular weight. It appears as colorless crystals or a white crystalline powder. It is soluble in water but partially soluble in alcohol^[3].

Fig 2: Structure of Aspirin

Aspirin is used as analgesic, anti-inflammatory drug. Aspirin also has an antiplatelet effect by inhibiting the production of thromboxane, which under normal circumstances binds platelet molecule together to create a patch over damaged walls of blood vessels. Because the platelet patch can become too large and also block blood flow, locally and downstream^[4]. Aspirin is also used long-term at low doses, to help preventing heart attacks, strokes, and blood coagulation formation in people^[5, 6]. The more wide spread and appropriate use of both provastatin sodium and aspirin in secondary prevention of cardiovascular diseases will avoid large number of pre mature death. On literature survey it was found that many analytical methods including UV methods are developed for both provastatin sodium [7-10] and aspirin^[11-12] individually. But there is no method for the simultaneous estimation of aspirin and provastatin sodium in combination. The exhaustive literature survey revealed that none of the most recognized pharmacopoeias and any major journals include these drugs in combination for simultaneous estimation of provastatin sodium and aspirin by UVvisible spectroscopy. Hence, there is a need for the development of newer, rapid, accurate and reproducible method for the simultaneous estimation of provastatin sodium and aspirin in pharmaceutical dosage forms. Keeping this in mind in the present study an attempt has been made to simultaneously estimate provastatin sodium and aspirin by simultaneous equation method .

Materials and Methods

Materials

All the chemicals and reagents used for the development of proposed method to estimate pravastatin sodium and aspirin are of spectroscopic grade. The instrument UV-visible spectrophotometer (shimadzu-1800) was used for the analytical method development and validation of pravastatin sodium and aspirin. The present work was carried out at department of pharmaceutical chemistry, government college of pharmacy, Bengaluru. A pure sample of pravastatin sodium and aspirin for the current study were procured from reliable sources. Pravastatin sodium was procured from Biocon pvt Ltd., and aspirin was procured from Microlabs as gift sample, sodium hydroxide (AR grade) from Himedia, Hydrochloric acid(AR grade) from Fisher Scientific. Double distilled Milli pore water was used for the analysis and the same was collected from Milli pore Direct Q3.

Selection of Solvent for analysis

The selection of solvents for analysis was carried out by the effect of different solvents on the pure drug and tablet powder. In methanol and isopropyl alcohol the drugs were soluble. While in water the aspirin solubility proportion is less. And long storage of drugs in 1M HCl and 1M NaOH turns dark in colour. At the end of these studies, 0.1M NaOH was chosen for preparation of solutions for analysis.

Selection of analytical wavelengths

Standard stock solutions having concentration 10 μ g/mL of each drug was prepared separately and they were scanned in the wavelength range of 200-400 nm and the maximum (λ_{max}) absorbance of both the drugs were found to be 229 nm and 297 nm for aspirin (Fig 3) and 238.40nm for pravastatin sodium (Fig 4)

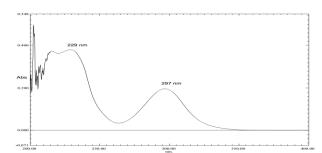
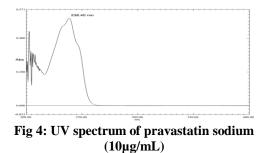



Fig 3: UV spectrum of aspirin (10µg/mL)

Preparation of Standard stock solution of aspirin and pravastatin sodium

Stock solution A was prepared by dissolving 50 mg of accurately weighed aspirin and pravastatin sodium into 100 mL volumetric flask and the final volume was adjusted to 100 ml with 0.1M NaOH to give the stock solution 500 μ g/mL concentration. From the resulting solution 50 mL of aspirin and 10 mL of pravastatin sodium were placed in 100 mL volumetric flask and volume adjusted with 0.1M NaOH to give solution of 250 μ g/mL of aspirin

solution and 50 µg/mL of pravastatin sodium (stock B). From stock solution B 0.5-5.0 mL of aspirin and 1-10 mL of pravastatin sodium were pipetted in to 25 mL volumetric flasks and the volume was made up with 0.1M NaOH to get concentration of 5-50 µg/mL of aspirin and 2-20 µg/mL of pravastatin sodium. The absorbance of resulting solution was measured against 297 nm and 238.40 nm. (Table 1, Fig 5&6)

Table 1: Calibration data of aspirin (5-45 $\mu g/mL)$ and pravastatin sodium

S. No		Aspirin	Pravasta	stin sodium
	Concen tration in µg/mL	Absorbance 297 nm	Concen tration of µg/mL	Absorbance 238.40 nm
1	05	0.076	02	0.084
2	10	0.154	04	0.150
3	15	0.230	06	0.226
4	20	0.295	08	0.304
5	25	0.374	10	0.370
6	30	0.435	12	0.449
7	35	0.513	14	0.522
8	40	0.591	16	0.595
9	45	0.669	18	0.668

 $(2-18 \,\mu g/mL)$

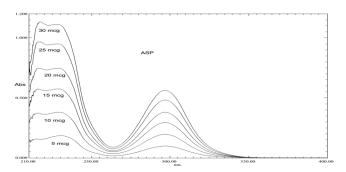
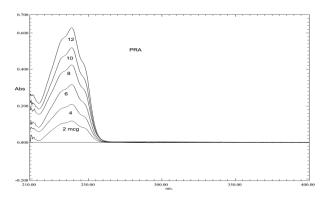



Fig 5: Calibration curves for Aspirin (5-30 $\mu g/mL)$

Fig 6: Calibration curves for pravastatin sodium

$(2-12 \ \mu g/mL)$

Formula: The following two sets of simultaneous equations are used to determine the concentrations of aspirin and provastatin sodium

Where.

Cx= concentration of aspirin in mixture,

Cy= Concentration of pravastatin sodium in mixture, ax1 and ax2 are absorptivity of aspirin at its λ_{max} and pravastatin sodium λ_{max}

ay1 and ax2 are absorptivity of pravastatin sodium at λ max of aspirin and λ max of pravastastin sodium.

For mixture 1: A1=0.149, A2= 0.0096 (from Table 4)

A1= Absorbance of mixture at λ 238.40 nm & A2= absorbance of mixture at 297 nm

ax1= 150, ax2= 192.31, ay1=382.50, ay2=0.00 (By Table 2&3)

A1=0.149, A2= 0.0096

 $\begin{array}{l} C_{ASP} = (0.0096 * 382.50 - 0.149 * 0.000) \\ (192.31 * 382.50 - 150 * 0.00) \end{array}$

= 36.72/73558.575

= 0.0004991 mg/ml or C_{ASP} = 4.99 µg/mL

 $\begin{array}{l} C_{PRA} = \left(0.149 * 192.31 \text{-} 0.096 * 150 \right) / \\ \left(\left(192.31 * 382.50 \text{-} 150 * 0.00 \right) \right. \end{array}$

= 28.65419/ 773558.575

µg/mL

 $= 0.0001937 \text{ mg/ml} \text{ or } C_{PRA} = 1.937$

For other mixtures the calculations were done similarly as mentioned above.

S.N O	Conce ntrati on of aspiri n (µg/m L)	Absorbance		E ^{1%} 1	cm
		238.4 0nm	297nm	238. 40n m	297nm
1	5	0.076	0.0970	152	194
2	10	0.154	0.1960	154	196
3	15	0.230	0.2930	153	195
4	20	0.295	0.3790	147	189
5	25	0.374	0.4810	149	192
6	30	0.435	0.5630	145	187
7	35	0.513	0.6562	146	187
8	40	0.591	0.7494	147	187
9	45	0.669	0.8426	148	187
			Averag e	150	192

Table 2: Absorbance of Aspirin at 238.40 nm and297 nm for simultaneous estimation method

Here $ay_1 = 150$, $ay_2 = 192.3$

Table 3: Absorbance of pravastatin sodium at

238.40 nm and 297 nm

S.N O	Conce ntratio n of Pravas tatin sodium (µg/ml)	Absorban ce	n E ^{1%} 1cm		1
		238.40 nm	297	238.40	297
			nm	nm	nm
1	2	0.084	0	420	0
2	4	0.150	0	375	0
3	6	0.226	0	376	0
4	8	0.304	0	380	0
5	10	0.370	0	370	0
6	12	0.449	0	374	0

7	14	0.522	0	371	0
8	16	0.595	0	372	0
9	18	0.668	0	371	0
			Aver age	382 .50	0.00

Here $ax_1 = 382.50$, $ax_2 = 0.00$

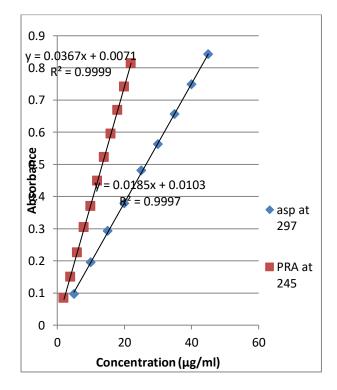


Fig 7: Calibration graph for Aspirin (5-45 μ g/mL) and Pravastatin sodium

$(2-18 \ \mu g/mL)$

Table 4: Absorbance of mix (Aspirin and pravastatin sodium) by simultaneous estimation method

	rati Pra tin sod aspi (mi in	ncent on of wasta ium irin xture mL)	Absor e	banc	tio obta	entra on ined mL)	%	Error
S. N o.	P r a st at in s o di u m	Asp irin	238. 40 nm	297 nm	Pro vas tati n sod ium	Asp irin	Prava statin sodiu m	Aspirin
1	2	5	0.14 9	0.0 96	1.9 37	4.9 9	-3.15	-0.200
2	4	10	0.31 5	0.2 05	4.0 50	10. 65	1.25	6.500
3	6	15	0.48 4	0.3 34	5.8 00	17. 36	-3.33	15.73
4	8	20	0.59 5	0.3 87	7.8 80	20. 123	-4.17	0.615
5	1 0	25	0.74 5	0.4 82	9.6 40	25. 06	-3.52	-0.252
6	1 2	30	0.83 9	0.5 74	11. 99	29. 84	-0.30	-0.553
7	1 4	35	1.02 8	0.6 78	13. 09	35. 15	-6.50	0.428

Determination of aspirin and pravastatin sodium in physical mixture

A physical mixture of aspirin and pravastatin sodium was prepared by blending appropriate quantities of each drug, powder equivalent to 10 mg of aspirin and pravastatin sodium was weighed and dissolved in 10 mL of 0.1M NaOH with the aid of ultrasonicator for 10 min. Solution was filtered through whatmann paper (No. 41) into a 100 mL volumetric flask and volume was made up to mark with 0.1M NaOH to give solutions of 100 µg/mL. Then these solutions are further diluted to 100 mL to get 250 µg/mL of aspirin and 50 µg/mL of pravastatin sodium. Various aliquots were prepared and suitably diluted with 0.1M NaOH to give final concentration of 2, 4, 6, 5, 10, 15 µg/mL in different volumetric flasks of 10 mL capacity. The absorbance of prepared aliquots mixture of aspirin and pravastatin sodium was measured against 297 nm and 238.40 nm. By substituting the values of A1 and A_2 the values of C_x and C_y can be calculated by solving the two equations simultaneously(Table 5)

S.No	Asj (µg/m	pirin	t so	e IOFIII Pravas atin dium g/mL)	Abso	rbance	Er	% ror
	Conc. Tkn.	Conc. Obt.	C o n c. T k n.	Con c. Obt.	238.40n m (A1)	297n m (A ₂)	Asp irin	Pra vast atin sodi um
1	5	4.99	2	1.97	0.149	0.04 0	-2	-1.5
2	10	10.35	4	4.05	0.315	0.09 9	3.5	1.25
3	15	15.36	6	5.96	0.484	0.13 6	2.4	- 0.66
4	5	5.1	4	4.1	0.308	0.55 0	2	2.5
5	5	5.2	6	6.15	0.309	0.80 0	4	2.5
6	10	10.08	2	2.07	0.570	0.29 0	0.8	3.5

Table 5: Ab	sorbance of	f assay :	mixtures	in	tablet
	dosag	e form			

Where, Tkn= Taken, Obt= Obtain, Conc.=

Concentration

Method validation

The developed method was validated according to their analytical procedures as per ICH guidelines for validation of analytical procedures in order to determine linearity, precision, LOD, LOQ, and accuracy for the analyte.

Linearity

The linearity of an analytical procedure is its ability (within a given range) to obtain test results that are directly proportional to the concentration of analyte in the sample solution.(Table 6 & 7)

S.	Aspirin						
No	Conc(µg/mL)	Absorbance	E ^{1%} 1cm				
1	5	0.097	194.0				
2	10	0.196	196.0				
3	15	0.293	195.0				
4	20	0.379	189.5				
5	25	0.481	192.4				
6	30	0.563	187.0				
7	35	0.645	181.7				
8	40	0.727	207.0				

Table 6: Linearity of aspirin in 0.1M NaOH

 Table 7: Linearity of Pravastatin sodium in 0.1M

NaOH

S.	Pravastatin sodium					
No	Conc (µg/mL)	Absorbance	E ^{1%} 1cm			
1	2	0.084	420			
2	4	0.150	375			
3	6	0.226	376			
4	8	0.304	380			
5	10	0.370	370			
6	12	0.449	374			
7	14	0.528	379			
8	16	0.607	377.1			

Precision

Precision studies are carried out to ascertain the reproducibility of the proposed methods. Repeatability was determined by preparing six replicates of same concentration of the sample and the absorbance was measured(Table 8, 9,10 & 11)

Repli cates	Absor bance	Simultaneous equation method				
		Absorbance	Concentration			
1	1	0.574	15.00			
2	2	0.575	15.00			
3	3	0.576	15.01			
Mear	Mean		15.00			
Stand	lard Deviation	0.008	0.040			
%RS	D	1.390	0.270			

Table 8: Intraday Precision data for Aspirin

Table 9: Intraday Precision data for Pravastatin

Repli cates	Absor bance	Simultaneous equation method				
		Absorbance	Concentrat ion			
1	1	0.3160	6.00			
2	2	0.3170	6.10			
3	3	0.3164	6.03			
	Mean	0.3170	6.043			
Stan	dard Deviation	0.0005	0.051			
	%RSD	0.1600	0.850			

sodium

Repli cates	Day interval	Simultaneous equation method		
		Absorbance	Concentratio	
		Absorbance	n	
1	Day 1	0.574	15.00	
2	Day 2	0.580	15.05	
3	Day 3	0.590	15.08	
Mea	n	0.581	15.00	
Stan	dard Deviation	0.008	0.040	
%R\$	SD	1.390	0.270	

Table 10: Interday Precision data for Aspirin

Replicates	Day interval	Simultaneous equation method		
		Absorbance	Concentra tion	
1	Day 1	0.3160	6.00	
2	Day 2	0.3180	6.03	
3	Day 3	0.3190	6.1	
Ν	/Iean	0.3170	6.043	
Standard Deviation		0.0015	0.005	
%	RSD	1.4800	1.850	

Table 11: Interday precision data for pravastatin sodium

Table 13: Ruggedness data for Aspirin

	Concer	ntration	Α	bsorbance	
	3 μ)	g/mL)	Simultaneous equation method		
01	Aspirin	Aspirin Pravast atin sodium		Pravasta tin sodium	
Ē	15	6	0.574	0.316	
ΥS	15	6	0.573	0.317	
AL.	15	6	0.573	0.315	
N	15	6	0.574	0.316	
4	15	6	0.575	0.318	
		Mean	0.5736	0.316	
		SD	0.0008	0.0008	
		% RSD	0.15	0.15	

Accuracy (% Recovery)

The accuracy of an analytical procedure expresses the closeness of agreement between the value that is accepted either as a conventional true value or as an accepted reference value and the value found. Accuracy of proposed method was determined using recovery studies. The recovery studies were carried out by adding different amount (80%,100% and 120%) of pure drug to the preanalysed formulation.(Table 12).

Ruggedness

Intermediate precision express the variation with in laboratories like Different Days, different analyst, different equipment etc. the intermediate precision was performed for aspirin and pravastatin sodium by different analyst on different day. The mixtures of samples are subjected for the UV analysis by different analysts and the obtained absorbance was recorded and the % RSD of replicates was calculated. The results obtained were presented in Table 13 & 14.

Table 14: Ruggedness data for Pravastatin sodium

	Con	centration	A	bsorbance	
	()	ug/mL)	Simultaneous equation method		
-02	Aspirin	Pravastat in sodium	Aspi rin	Prava statin sodium	
Ē	15	6	0.574	0.313	
ΧS	15	6	0.573	0.318	
ÅL,	15	6	0.573	0.315	
Ň	15	6	0.575	0.316	
A	15	6	0.575	0.318	
		Mean	0.574	0.316	
		SD	0.001	0.0021	
		% RSD	0.17	0.67	

Landa	Aspiri	n (µg/mL)		vastatin n (µg/mL)		conc. µg/mL)	Abso	rbance		concentration tained	Amt. of recovered		% Re	ecovery
Levels	Std. soln	Sample mix soln	Std. soln	Sample mix soln	ASP	PRA	ASP	PRA	ASP	PRA	ASP	PRA	ASP	PRA
80%	10	08	8	6.4	18	14.4	0.2580	0.5396	17.82	14.28	7.820	6.28	97.75	98.12
80%	10	08	8	6.4	18	14.4	0.2580	0.5434	17.81	14.30	7.810	6.30	97.60	98.43
80%	10	08	8	6.4	18	14.4	02580	0.5426	17.81	14.28	7.830	4.28	97.87	98.12
100%	10	10	8	8.0	20	16.0	0.2878	0.6042	19.81	15.90	9.810	7.90	98.10	98.75
100%	10	10	8	8.0	20	16.0	0.2882	0.5772	19.93	15.52	9.930	7.92	99.30	99.00
100%	10	10	8	8.0	20	16.0	0.2827	0.6064	19.8	15.96	9.960	7.966	98.00	99.57
120%	10	12	8	9.2	22	17.2	0.3175	0.644	21.90	16.90	11.90	8.90	99.16	96.73
120%	10	12	8	9.2	22	17.2	0.3161	0.6498	21.80	17.10	11.80	9.10	98.33	98.91
120%	10	12	8	9.2	22	17.2	0.3163	0.6598	21.82	17.36	11.82	9.36	98.50	101.70

Table 12: % Recovery study data for aspirin and pravastatin sodium by simultaneous estimation method

Where ASP = Aspirin, PRA= Pravastatin sodium

Robustness

The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters and provide an indication of its reliability during normal usage. The evaluation of robustness should be considered during the development phase and depends on the type of procedure under study. It should show the reliability of an analysis with respect to deliberate variations in method parameters like temperature (Table 15 & 16)

	Concentr	ation	Absorbance			
	(µg/m)	L)	Simultan	eous equation method		
	Aspirin	ravastatin sodium	Aspirin	Pravastatin sodium		
	15	6	0.574	0.316		
	15	6	0.563	0.317		
C_{0}	15	6	0.573	0.312		
At 18	15	6	0.554	0.32		
ł	15	6	0.575	0.32		
		Mean	0.5678	0.317		
		SD	0.0090	0.003		
		%RSD	1.60	1.05		

Table 15: Robustness data	for	Aspirin
---------------------------	-----	---------

Table 16: Robustness data for Pravastatin sodium

	Concentr	ation	Abs	orbance	
	(µg/ml	L)	Simultaneous equation method		
	Aspirin	ravastatin sodium	pirin	Pravastatin sodium	
	15	6	0.574	0.313	
re	15	6).573	0.318	
eratui	15	6).563	0.315	
lempo	15	6).575	0.316	
At Room Temperature	15	6).575	0.318	
At Re		Mean).574	0.316	
		SD	0.001	0.0021	
		%RSD	0.89	0.67	

Limit of detection and limit of quantification

Limit of detection (LOD) and limit of quantification (LOQ) were determined based on the standard deviation of response and the slope and were calculated by using the equation

LOD=3×s/S and LOQ= 10×s/S Where s is standard deviation of intercept and S is the slope of the line

Results

Aspirin and Pravastatin sodium were individually analysed by UV spectrophotometric method using the solvent 0.1M NaOH. Optical characteristics such as λ_{max} , $E^{1\%}_{1cm}$, slope intercept, correlation coefficient, linearity and range, LOD and LOQ were observed as in Table 17 & 18.

Table 17: Calibration Data graph for Aspirin

Parameter	Simultaneous equation method
λmax (nm)	297
E ^{1%} 1cm	192
Slope*	0.0367
Intercept*	0.0071
Correlation coefficient	0.999
nearity and range	5-45
LOD (µg/ml)	0.79
LOQ (µg/ml)	1.17

Table 18: Calibration Data graph for Pravastatin sodium

Parameter	Simultaneous equation method
λ_{max} (nm)	238.40
E ^{1%} 1cm	382.20
Slope*	0.0185
Intercept*	0.0103
Correlation coefficient	0.9997
Linearity and range	2-18
LOD (µg/ml)	0.55
LOQ (µg/ml)	1.695

The mixture of aspirin and pravastatin sodium was analysed by UV spectroscopic method using simultaneous equation method. The method developed was validated according to the ICH guidelines. The observed results of the developed and validated method in the present study suggests that the method can be adopted for routine analysis of these drugs simultaneously.

Conclusion

A physical mixture was prepared in the laboratories of Government College of Pharmacy as no combined dosage forms of aspirin and pravastatin sodium are available in the market. As spectroscopic methods are highly powerful and convenient methods of analysis, in the present study simultaneous equation method was developed and validated for routine analysis of aspirin and pravastatin sodium in their bulk and physical mixtures. In simultaneous equation method different wavelengths are selected to calculate their concentrations in both bulk and in combination. This developed method is economical, accurate and precise. From the observations of the method developed and validated it can be concluded that, it may be used for routine analysis of aspirin and pravastatin sodium simultaneously at industrial level in their dosage forms.

Acknowledgement

Authors are thankful to the Principal, Government College of Pharmacy, Bengaluru for his constant support and encouragement in our research work and also for providing laboratory facilities to complete the present research work.

References

- 1. CAS number 81131-70-6 and 1554206 USP
- 2. Tripathi K. Essentials of medical pharmacology, Jaypee publication edition. 7th edition
- 3. The Merck Index, 9th Edition, Merck & CO., INC., 874, pp 114
- Hennekens CH, Sacks FM, Tonkin A, Jukema JW, Byington RP, Pitt B, Berry DA, Berry SM, Ford NF, Walker AJ, Natarajan K. Archives of inte med. 2004 ;164(1):40-44.
- 5. <u>http://en.wikipedia.org/wiki/Pravastatin</u>. 20/03/2016
- 6. The Indian Pharmacopoeia Commission Ghaziabad, 2014, vol-III, 2532-2534.
- Balaji S, Katteboina S. Int J PharmaTech Res 2009; 1(4):1017-1019.
- 8. Doshi D, Bhatt P. Res J Pharm Tech 2010;3(3):869-879.
- 9. Trivedi G, Hasumati R. Pharm Tutor 2014;2(11):59-65.
- 10. Kadikar H K, Dr. Shah R. Int. J Pharm Res Bio Sci 2012;1(4):112-127.
- 11. Ambadekar SR, Barabde GR. J Appl Chem 2014;7(9):57-61.
- 12. Bhattacharyya I, Bhattacharyya SP, Talukdar S, Medya S. Int Res Pharm Sci 2011; 2(1):84-87.